Problem Portal
Portal1:
Portal2:
Portal3:
Description
Given a directed graph \(\text{G}\), consider the following transformation.
First, create a new graph \(\text{T(G)}\) to have the same vertex set as \(\text{G}\). Create a directed edge between two vertices u and v in \(\text{T(G)}\) if and only if there is a path between u and v in \(\text{G}\) that follows the directed edges only in the forward direction. This graph \(\text{T(G)}\) is often called the \(\texttt{transitive closure}\) of \(\text{G}\). We define a \(\texttt{clique}\) in a directed graph as a set of vertices \(\text{U}\) such that for any two vertices u and v in \(\text{U}\), there is a directed edge either from u to v or from v to u (or both). The size of a clique is the number of vertices in the clique.Input
The number of cases is given on the first line of input. Each test case describes a graph \(\text{G}\). It begins with a line of two integers \(n\) and \(m\), where \(0 \leq n \leq 1000\) is the number of vertices of \(\text{G}\) and \(0 \leq m \leq 50, 000\) is the number of directed edges of \(\text{G}\). The vertices of \(\text{G}\) are numbered from \(1\) to \(n\). The following \(m\) lines contain two distinct integers \(u\) and ?\(v\) between \(1\) and \(n\) which define a directed edge from \(u\) to \(v\) in \(\text{G}\).
Output
For each test case, output a single integer that is the size of the largest clique in \(\text{T(G)}\).
Sample Input
15 51 22 33 14 15 2
Sample Output
4
Chinese Description
给你一张有向图\(\text{G}\),求一个结点数最大的结点集,使得该结点集中的任意两个结点 \(u\) 和 \(v\) 满足:要么 \(u\) 可以达 \(v\),要么 \(v\) 可以达 \(u\)(\(u\), \(v\)相互可达也行)。
Solution
Tarjan
缩点\(+\)记忆化搜索。
Source
#include#include #include #include #include using namespace std;const int MAXN=200005;struct node { int to, nxt;} edge[MAXN];int T, n, m, u, v, num, cnt, top, tot, ans, head[MAXN], DFN[MAXN], LOW[MAXN], sum[MAXN], vis[MAXN], sum1[MAXN], stack[MAXN], belong[MAXN];inline void addedge(int u, int v) {//前向星存图 edge[num].to=v; edge[num].nxt=head[u]; head[u]=num; num++;}inline void init() {//初始化 num=cnt=top=tot=ans=0; memset(head, -1, sizeof(head)); memset(DFN, 0, sizeof(DFN)); memset(LOW, 0, sizeof(LOW)); memset(vis, 0, sizeof(vis)); memset(sum, 0, sizeof(sum)); memset(sum1, -1, sizeof(sum1));}inline void tarjan(int u) {//Tarjan缩点 vis[u]=1; stack[++top]=u; DFN[u]=++cnt; LOW[u]=cnt; for (int i=head[u]; ~i; i=edge[i].nxt) { int v=edge[i].to; if (!DFN[v]) { tarjan(v); LOW[u]=min(LOW[u], LOW[v]); } else if (vis[v]) LOW[u]=min(LOW[u], DFN[v]); } if (DFN[u]==LOW[u]) { tot++; while (stack[top]!=u) { vis[stack[top]]=0; belong[stack[top]]=tot; sum[tot]++; top--; } vis[stack[top]]=0; belong[stack[top]]=tot; top--; sum[tot]++; }}inline int dfs(int u) {//记忆化搜索 if (sum1[u]!=-1) return sum1[u]; sum1[u]=sum[u]; int addd=0; for (int i=1; i<=n; i++) { if (belong[i]==u) { for (int j=head[i]; ~j; j=edge[j].nxt) { int v=edge[j].to, s1=belong[v]; if (u==s1) continue; addd=max(addd, dfs(s1)); } } } return sum1[u]+=addd;}int main() { scanf("%d",&T); while (T--) { scanf("%d%d",&n, &m); init(); for (int i=1; i<=m; i++) { scanf("%d%d",&u, &v); addedge(u, v); } for (int i=1; i<=n; i++) if (!DFN[i]) tarjan(i); for (int i=1; i<=tot; i++) ans=max(ans, dfs(i));//寻找最大值 printf("%d\n",ans);//输出 } return 0;}